Crohn's Disease Disturbs the Immune Properties of Human Adipose-Derived Stem Cells Related to Inflammasome Activation

نویسندگان

  • Carolina Serena
  • Noelia Keiran
  • Ana Madeira
  • Elsa Maymó-Masip
  • Miriam Ejarque
  • Margarida Terrón-Puig
  • Eloy Espin
  • Marc Martí
  • Natalia Borruel
  • Francisco Guarner
  • Margarida Menacho
  • Antonio Zorzano
  • Monica Millan
  • Sonia Fernández-Veledo
  • Joan Vendrell
چکیده

Crohn's disease (CD) is characterized by the expansion of mesenteric fat, also known as "creeping fat." We explored the plasticity and immune properties of adipose-derived stem cells (ASCs) in the context of CD as potential key players in the development of creeping fat. Mesenteric CD-derived ASCs presented a more proliferative, inflammatory, invasive, and phagocytic phenotype than equivalent cells from healthy donors, irrespective of the clinical stage. Remarkably, ASCs from the subcutaneous depot of patients with CD also showed an activated immune response that was associated with a reduction in their immunosuppressive properties. The invasive phenotype of mesenteric CD ASCs was governed by an inflammasome-mediated inflammatory state since blocking inflammasome signaling, mainly the secretion of interleukin-1β, reversed this characteristic. Thus, CD alters the biological functions of ASCs as adipocyte precursors, but also their immune properties. Selection of ASCs with the best immunomodulatory properties is advocated for the success of cell-based therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells

Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...

متن کامل

From a Chemical Matrix to Biologically/Biomechanically-Defined Matrices-Optimizing/Correlating Growth Rate and Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells

Use of Adipose Stem Cells (ADSCs), obtained easily in a relatively less invasive manner (abdominoplasty) and characterized by flow cytometry, is a classical approach in stem cell research and clinical aspects. Other techniques such as isolation of the cells from bone marrow aspirates  (1) are rather more invasive. Further, it is pertinent to point out that growth rate, differentiatio...

متن کامل

Human Mesenchymal Stem Cells Derived from Adiopose Tissue and Placenta and the Adipocytic and Osteocytic Differentiation

Introduction: Mesenchymal stem cells can be isolated from adult tissues, such as the adipose tissue, or other sources. Among all these sources, adipose tissue because of easy access, and placenta due to its immunomodulatory properties, in addition to another useful properties, were attracted more attention to themselves. Isolation and comparing these two different sources can help us for acces...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017